Scroll waves pinned to moving heterogeneities
نویسندگان
چکیده
منابع مشابه
Stabilization of collapsing scroll waves in systems with random heterogeneities.
In three-dimensional reaction-diffusion systems, excitation waves may form and rotate around a one-dimensional phase singularity called the filament. If the filament forms a closed curve, it will shrink over time and eventually collapse. However, filaments may pin to non-reactive objects present in the medium, reducing their rate of collapse or even allowing them to persist indefinitely. We use...
متن کاملModelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue
In cardiac tissue, electrical spiral waves pinned to a heterogeneity can be unpinned (and eventually terminated) using electric far field pulses and recruiting the heterogeneity as a virtual electrode. While for isotropic media the process of unpinning is much better understood, the case of an anisotropic substrate with different conductivities in different directions still needs intensive inve...
متن کاملPinned scroll rings in an excitable system.
Three-dimensional spiral waves in the Belousov-Zhabotinsky reaction are pinned to unexcitable heterogeneities. This pinning can prevent the collapse of scroll rings even if the heterogeneity does not extend along the entire wave filament. In the latter case, frequency differences create stationary gradients in the rotation phase. These twist patterns and their frequencies agree with algebraic s...
متن کاملAnalysis of anchor-size effects on pinned scroll waves and measurement of filament rigidity.
Inert, spherical heterogeneities can pin three-dimensional scroll waves in the excitable Belousov-Zhabotinsky reaction. Three pinning sites cause initially circular rotation backbones to approach equilateral triangles. The resulting stationary shapes show convex deviations that increase with decreasing anchor radii. This dependence is interpreted as a transition between filament termination at ...
متن کاملBuckling of scroll waves.
A scroll wave in a sufficiently thin layer of an excitable medium with negative filament tension can be stable nevertheless due to filament rigidity. Above a certain critical thickness of the medium, such a scroll wave will have a tendency to deform into a buckled, precessing state. Experimentally this will be seen as meandering of the spiral wave on the surface, the amplitude of which grows wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2015
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.91.032930